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Keywords:
 Mitral regurgitation (MR) is one of the most commonly encountered valvular lesions in clinical practice. MR can
be either primary (degenerative) or secondary (functional) depending on the etiology ofMRand the pathology of
the mitral valve (MV). Echocardiography is the primary diagnostic tool for MR and is key in determining this
etiology aswell as MR severity.While clinicians usually turn to 2 Dimensional echocardiography as first-line im-
aging, 3 Dimensional echocardiography (3DE) has continually shown to be superior in terms of describing MV
anatomy and pathology. This review article elaborates on 3DE techniques, modalities, and advances in software.
Furthermore, the article demonstrates how 3DE has reformedMR evaluation and has played a vital role in deter-
mining patient management.
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Mitral regurgitation (MR) is a commonly encountered valvular
lesion in modern clinical practice and is increasing in prevalence
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disease, endocarditis, etc.3 In secondary MR, also known as func-
tional MR (FMR), the MV apparatus is anatomically intact, and
the MR is due to geometric displacement of the papillary muscle
leaflets due to left ventricular (LV) dysfunction and remodeling.

Echocardiography is the primary diagnostic tool for MR. In addi-
tion to evaluating MR severity, the modality is helpful in discerning
the etiology of MR and can be used to evaluate the morphology, ge-
ometry, and function of the MV apparatus.1 Visualization of these
characteristics is key and plays a vital role in determining the man-
agement of patients. While 2-Dimensional (2D) echocardiography
(2DE) is recognized as first-line in diagnostic imaging of MR, 3-
Dimensional (3D) echocardiography (3DE) has continually shown
to be superior in terms of describing MV anatomy and pathology,
especially with the development of software packages. Thus, this
review discusses 3DE techniques and modalities and how they
have revolutionized MR evaluation.
Anatomy and pathophysiology

To understand the pathophysiology of MR and the complexity of
MR imaging, clinicians should have a strong grasp of the anatomy
of theMV. TheMV apparatus consists of the following structures: an-
terior and posterior leaflets, mitral annulus, chordae tendinae, and
two papillary muscles (anterolateral and posteromedial). These
structures together with the left atrial (LA) myocardium, the LV
myocardium, the LA and LV endocardium, and the aorto-mitral cur-
tain make up what is known as the MV complex.4,5 For the MV to
function normally, the structures within this complex must interact
in a coordinated fashion.

MV closure, for example, requires two opposing yet balanced
forces.6 During systole, the LV cavity contracts and the mitral annu-
lus moves towards the apex. This drives blood up against the leaflets
and acts as a ‘closing force,’ leading to leaflet coaptation. This closing
force is opposed by the ‘tethering force’ caused by the contraction of
the papillary muscles pulling the leaflets apically via the chordae
tendinae.7 When the tethering and closing forces are balanced, the
leaflets will naturally come together at the level of the plane of the
mitral annulus; any imbalance will lead to MR. If the tethering forces
prevail, the leaflet coaptation will be abnormally below the annular
plane into the LV. Conversely, if the closing forces are greater, the mi-
tral leaflets will come together above the annular plane towards the
LA.8
Table 1
Echocardiography parameters and their determination of severe MR.

MR Parameter Value Indicating Severe MR

Regurgitant jet
area

Large central jet (usually b 10 cm2 or b 40% of LA area) or
variable size wall-impinging jet swirling in LA

Vena contracta
width

≥0.7 cm

EROA ≥0.40 cm2

Regurgitant
volume

≥60 mL/beat

Regurgitant
fraction

≥50%

EROA = effective regurgitant orifice area; MR = mitral regurgitation; LA = left atrium.
Primary mitral regurgitation

Primary or degenerative MR is the most common valvular
abnormality, affecting about 1.7% of the world's population.9

While PMR can have a wide variety of presentations, its main
distinction from FMR is the structural disruption of one or more
components of the MV apparatus. The two leading causes are myx-
omatous degeneration (also called Barlow disease) and fibroelastic
deficiency.10

Barlow disease, which typically occurs in middle aged patients, is
thought to be a genetic condition, in which the leaflet and chordal
tough, fibrous structure is replaced with a loose mucopolysaccharide-
rich material. This leads to progressive thickening, redundancy, and
billowing of multiple leaflet segments.11,12 Fibroelastic deficiency, on
the other hand, is associated with the elderly and usually involves one
segment that becomes thick and redundant while the remaining mitral
leaflet becomes translucent in appearance and thinner than normal.12,13

Other less common causes of PMR include connective tissue diseases,
such as Marfan's disease and Ehlers-Danlos syndrome, and loss of pap-
illary muscle support secondary to endocarditis or acute coronary
syndrome.14
Secondary mitral regurgitation

Secondary or functional MR is also commonly encountered in clini-
cal situations. Given its broad definition and multiple etiologies, its pre-
cise prevalence has been difficult to calculate15,16; its prevalence has
been reported to be up to 60% of cases in ischemic cardiomyopathy
and 40% in non-ischemic cardiomyopathy.17,18 In this disease state,
the MV apparatus is structurally normal, and the MR is a consequence
of LV remodeling leading to dilation of themitral annulus and displace-
ment of the papillarymuscles (PM). This displacement alters thenormal
perpendicular tension applied by the PM on the MV and results in im-
paired systolic excursion by one or both leaflets, causing incomplete co-
aptation and regurgitation.19,20

Echocardiographic evaluation

2DE andDoppler are thefirst-linemodalities in evaluatingMR.How-
ever, 3DE, especially real time 3D transesophageal echocardiography
(TEE), has greatly enhanced MR evaluation and aided in visualization
during surgical and percutaneous MV procedures.

2D echocardiography

MR, like other regurgitant flows, consists of the following three
elements: (1) flow convergence proximal to the MV orifice; (2) flow
through the orifice, referred to as the vena contracta; and (3) disorderly
flow past the regurgitant orifice, referred to as the regurgitant jet.

Clinicians first characterized MR severity with angiography by
visualizing the regurgitant jet, which was indicated by the amount of
contrast media that was ejected from the LA into the LV. However, the
technique is costly and time consuming, and exposes the patient to
radiation and iodinated contrast.21,22 Thus, angiography in this setting
has become virtually obsolete. With the advent of color Doppler, clini-
cians can visualize and quantify all three elements to determine MR
severity (Table 1) using the techniques described below . The guidelines
from the American Society of Echocardiography (ASE) discuss these
techniques and their limitations in further detail.3

Jet area
Historically, clinicians used color Doppler echocardiography to char-

acterize the regurgitant jet by estimating its size either in absolute terms
or relative to the left atrial size. This method is primarily applicable to
cases involving a single central jet and is significantly affected by hemo-
dynamics and technical aspects, which are further detailed in Table 2.22

Given these limitations, techniques were developed to measure the
vena contracta width (VCW) and to calculate the effective regurgitant
orifice area (EROA) using the flow convergence.

Vena contracta
The vena contracta is the highest-velocity region of the flow jet and

is typically located at or just downstream of the regurgitant orifice.23

The VCW directly reflects the EROA and can be measured in the long-



Table 2
2D echocardiography methods and their limitations.

Regurgitant jet area • Primarily applicable to central jet
• Eccentric jets appear smaller
• Subject to hemodynamic variation (e.g. hypertension
leads to a larger jet)

• Affected by technical aspects (e.g. lowering the
Nyquist limit gives the appearance of a larger jet)

Vena contracta width • Primarily useful for one jet
• Intermediate values require confirmation by CMR
• Assumes a circular orifice

PISA method (for EROA
calculation)

• Less accurate with eccentric jets
• Cannot be used with multiple jets
• Assumes a circular orifice

Abbreviations: CMR = cardiac magnetic imaging; PISA = proximal isovelocity surface
area.
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axis imaging plane perpendicular to the mitral leaflet closure.24 This
allows clinicians to provide a more quantitative assessment of MR
severity. Furthermore, because the method involves a high velocity
area and a fixed orifice, thismethod is not as affected by hemodynamics
and technical aspects.
Effective orifice area
The flow convergence can be utilized to calculate the EROA by using

the proximal isovelocity surface area (PISA) method, which applies the
principle that blood approaching a circular orifice will form concentric,
hemispheric shells of increasing velocity and decreasing surface
area.25 This is the most quantitative method of the three described
thus far and has been shown to have a high correlation with MR sever-
ity. Themajor limitation of thismethod is the assumption that the EROA
is circular in shape, which is often not the case. In secondary (func-
tional) MR, for example, the orifice tends to be ovoid in shape.

Once the EROA is calculated, it can then bemultiplied by the velocity
time integral of the MR jet on continuous wave spectral Doppler to ob-
tain the MR volume.25 Subsequently, the MR fraction can be calculated
by comparing the MR volume to the flow volume across a non-
regurgitant orifice, such as the left ventricular outflow tract. The ASE
guidelines emphasize the importance of these values,whether obtained
Fig 1. 3D color Doppler multiplanar reconstruction (MPR), planimetry of vena contracta area. P
severemitral regurgitation in the long axis. Panel C –Measurement of the 3D vena contracta are
3D color volume rendering of severe mitral regurgitation. Abbreviations: MR, mitral regurgitat
by Doppler 2DE or by cardiac magnetic imaging, since they often corre-
late to symptom severity.3

3D echocardiography

Several studies have demonstrated that 3D transthoracic echocardi-
ography (TTE) and TEE are superior to their 2D counterparts in terms of
describing MV anatomy and identifying MV pathology.26,27 For exam-
ple, one study found that in an unselected population undergoing MV
prolapse, 3D TEE had an overall accuracy of 96% compared to 87%
when 2D TEE was utilized.27 This difference in accuracy is to be ex-
pected since 2D imaging cannot portray the exact spatial location of
each structure in the MVC and forces the examiner to create a complex
mental depiction of the anatomy and pathology.

3DE's high accuracy can be attributed to the different modalities
available for visualization, which are as follows: volume-rendered, bi-
plane/multiplane, and color Doppler. Volume-rendered imaging has
three spatial dimensions and can be further divided into three modali-
ties of imaging (live 3DE, full volume, and zoom) depending on the
magnitude of each dimension. Live 3DE, or narrow angle, imaging is
the best for demonstrating the MV anatomy, but it cannot capture the
entire MV apparatus in one live 3DE slice. Full-volume, or wide angle,
imaging is more well suited to demonstrate leaflet movement since it
has the best temporal resolution. However, it has poor spatial resolution
and frequently has misalignment of individual slices (stitching artifact).
Zoom imaging is themost useful for visualizing theMV since if sacrifices
frame rate for good spatial resolution.16

The biplane/multiplane reconstruction and color Doppler modalities
improve the accuracy of describingMV anatomy, but contributemore to
the quantification of MR, which is essential in determining proper man-
agement and prognosis. 3DE color Doppler, for example, can determine
the size, direction, and shape of the MR jet even if the shape is complex
and eccentric.28 This modality can also allow the clinician to more
clearly visualize the proximal flow convergence of the regurgitant jet
and reveal multiple regurgitant jets.29,30 Even though the size of the
regurgitant jet cannot be measured directly, the MR severity can be
quantified by measuring the VCW (Fig. 1).31 This measurement can be
performed using either multiplanar reconstruction or color
Doppler.32,33 Moreover, one can use planimetry to measure the EROA
anels A and B – 2D color Doppler derived from a 3D color Doppler data set demonstrates
a (also referred to as the effective regurgitant orifice area, EROA) in the short axis. Panel D –
ion; EROA, effective regurgitant orifice area.
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directly, regardless of its shape. Thus, these 3DEmethodsmore precisely
portray MR severity compared to 2D techniques, which incorrectly as-
sume a circular EROA.34

The en face images on 3DE (Fig 2), which are equivalent to how
surgeons see the MV, are the most clinically useful 3DE images. These
images can also be rotated along the plane perpendicular to the imaging
monitor to allow clinicians to visualize the entirety of theMV apparatus,
facilitating the diagnostic process. By utilizing en face images in MVP
evaluation, for example, one can survey the number of prolapsing
segments, their location, and their extent, and the presence or absence
of flail segments.14

Companies have also developed specific modeling and quantifica-
tion software packages for 3DE. These packages can create unique
models of the mitral valve by isolating it from the rest of the cardiac
anatomy, allowing for better visualization and more accurate measure-
ments (Fig 3). Moreover, companies, such as Siemens and Philips, have
developed automatic software that can analyze several MV parameters
Fig 2.3Dmitral valve en face (surgeon's) view; normal vs. abnormal. Panel A – 3D imaging in the
A2, and A3) and posterior (P1, P2, and P3)mitral valve leaflets are depicted using the Carpentier
of the P2 scallop of the posterior mitral leaflet. The black arrow points to the flail portion of
regurgitation. A so-called “crooked smile” is produced due to asymmetric tethering (med
visualized along the A3-P3 coaptation line. Panel D – 3D imaging in the surgeon's view demon
arrow points to a focal point of perforation within the A2 scallop of the anterior mitral leaflet.
in one frame and throughout the cardiac cycle. This reduces the time
needed for image analysis and increases reproducibility among practi-
tioners. The new eSieValves software, for example, has already demon-
strated significant correlation with manual measurements and good
intra-observer variability with a better level of agreement than manual
measurements.35 Another study found that using a computer-learning
algorithm software by Philips had high accuracy when compared to
expert manual measurements and surgical findings and that the
software significantly improved reproducibility and efficiency of MV
quantification by novice users.36

3D echocardiography in primary mitral regurgitation

As mentioned above, software packages for 3DE imaging have
allowed for further quantification of MV parameters. These parameters
include anterior and posterior leaflet area, billowing height and volume
of prolapsing segment, anterio-posterior annular diameter, etc.37,38
surgeon's viewdemonstrates a normalmitral valve. Individual scallops of the anterior (A1,
classification. Panel B – 3D imaging in the surgeon's viewdemonstrates prolapsewith flail
the scallop. Panel C – 3D imaging in the surgeon's view demonstrates ischemic mitral
ial N lateral) of the mitral valve leaflets. Black arrow points to the regurgitant orifice,
strates mitral valve leaflet perforation in a patient with streptococcal endocarditis. Black
AV, aortic valve.



Fig 3. 3Dmitral valve modeling. Panel A – 3Dmitral valve modeling using Siemens system demonstrates posterior mitral leaflet prolapse with and without superimposed color Doppler.
This system uses machine learning to automatically produce a 3D model of the mitral valve annulus and leaflets. Panel B – 3D mitral valve modeling using Philips system demonstrates
posterior mitral leaflet prolapse. On the 3D mitral valve en face view, the black arrow points to prolapse of the P2 scallop of the posterior mitral leaflet.
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With these values, physicians can distinguish Barlow's disease (which
has a marked increase in overall leaflet area, leaflet billowing height
and volume, and annular size) from fibroelastic deficiency (in which
these changes are not as drastic).39,40 Defining the etiology of primary
MR can then determine the type of repair and the level of surgical
expertise required.

Furthermore, 3DE can more accurately measure end-diastolic
volume and end-systolic volume than 2D techniques.41 Assessing
these parameters is key because a LV ejection fraction (EF) b0.60
signifies LV systolic dysfunction, which correlates with poor long-term
prognosis and is an indication for surgical management even if the
patient is asymptomatic.3

3D echocardiography in secondary mitral regurgitation

Even though the role of 3DE in diagnosing and determiningmanage-
ment in FMR is not defined, it is evident that 3D imaging (especially en
face images) can provide unique views of the MV apparatus, the spatial
relationship between the MV and LV, and even the bimodal/saddle
shape of the mitral annulus that are not possible with 2DE imaging.42

In addition to being able to quantify the severity of FMR using the
methods described above, clinicians can measure the coaptation depth,
the tenting area, and the angle subtended by the posterior MV leaflet.43

Thesemeasurements can be used to predict successfulMV repair. For ex-
ample, a coaptation depth of ≥1 cm, tenting area of ≥1.6 cm2, and a pos-
terior leaflet angle of N45% predict significant recurrent MR after
annuloplasty.44

With these details, it is also possible to elucidate the etiology of FMR.
In ischemic cardiomyopathy, typically only the posteriomedial PM is
displaced, leading to asymmetric tethering and restricted closure of the
medial portion of the posterior leaflet. On 3DE images, this has the ap-
pearance of a ‘crooked smile’ as shown in Fig 2. Nonischemic cardiomy-
opathy, on the other hand, usually involves displacement of both PMs
and leads to central MR. This can further be demonstrated on 3D TEE
bymeasuring the tethering lengths, which are uneven in ischemicMR.45

3D echocardiography in mitral valve repair or replacement

Given the precision of 3DE, it is not surprising that 3D TEE has be-
come the preferred technique for guiding the percutaneous repair of
the MV using a mitral clip.46 This modality allows surgeons to assess
the results of the repair, visual possible complications, such as
paravalvular and para-annular leaks, and allow more precise delivery
of the catheter towards the leaflet edges (Fig 4).41,47

Visualization of MV characteristics during surgery with 3D TEE is
also key to successfulMR annuloplasty or replacement. Themodality al-
lows surgeons to tailor choices according to the patient's annuloplasty
ring characteristics.48,49 This individualized approach to surgery can
greatly affect post-operative outcomes since the likelihood of success
depends on how closely the post-surgical mitral annulus is restored to
its natural saddle shape and function.50 Without this consideration, pa-
tients can experience recurrent MR and continued LV remodeling,
which ultimately leads to poor outcomes.51

Conclusion

Current imaging modalities have contributed greatly to not only vi-
sualizing the details of the MV apparatus, but also understanding the



Fig 4. 3Dmitral valve repairs and prostheses. 3D imaging in the surgeon's viewdemonstrates the left atrial aspect of surgical mitral valve repairs and replacements. (A) Annuloplasty band
(incomplete ring); (B) complete annuloplasty ring; (C) mitral bioprosthesis; (D) bileaflet mechanical mitral valve prosthesis; (E) percutaneous mitral valve-in-valve (placement of a
Sapien transcatheter bioprosthesis within a degenerated surgically implanted mitral bioprosthesis); (F) Percutaneous transfemoral-transseptal mitral valve replacement using a
Caisson bioprosthesis within a native mitral valve.

395M.M. Quien et al. / Progress in Cardiovascular Diseases 61 (2018) 390–396
etiology and pathomorphology of MR. While 2DE originated as the gold
standard for evaluatingMR, the enhanced visualization of theMV appa-
ratus and the quantification techniques available in 3DE speak to 3DEs
all-encompassing superiority over 2DE imaging. 3DE's correlation to
clinical outcomes should further encourage clinicians to take advantage
of this modality in order to be more well informed when discussing a
patient's prognosis and determining the next steps in management.
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