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BACKGROUND: We have recently tested an automated machine-learning 
algorithm that quantifies left ventricular (LV) ejection fraction (EF) from 
guidelines-recommended apical views. However, in the point-of-care 
(POC) setting, apical 2-chamber views are often difficult to obtain, limiting 
the usefulness of this approach. Since most POC physicians often rely on 
visual assessment of apical 4-chamber and parasternal long-axis views, 
our algorithm was adapted to use either one of these 3 views or any 
combination. This study aimed to (1) test the accuracy of these automated 
estimates; (2) determine whether they could be used to accurately classify 
LV function.

METHODS: Reference EF was obtained using conventional biplane 
measurements by experienced echocardiographers. In protocol 1, we 
used echocardiographic images from 166 clinical examinations. Both 
automated and reference EF values were used to categorize LV function 
as hyperdynamic (EF>73%), normal (53%–73%), mildly-to-moderately 
(30%–52%), or severely reduced (<30%). Additionally, LV function was 
visually estimated for each view by 10 experienced physicians. Accuracy 
of the detection of reduced LV function (EF<53%) by the automated 
classification and physicians’ interpretation was assessed against the 
reference classification. In protocol 2, we tested the new machine-learning 
algorithm in the POC setting on images acquired by nurses using a portable 
imaging system.

RESULTS: Protocol 1: the agreement with the reference EF values was 
good (intraclass correlation, 0.86–0.95), with biases <2%. Machine-
learning classification of LV function showed similar accuracy to that 
by physicians in most views, with only 10% to 15% cases where it was 
less accurate. Protocol 2: the agreement with the reference values was 
excellent (intraclass correlation=0.84) with a minimal bias of 2.5±6.4%.

CONCLUSIONS: The new machine-learning algorithm allows accurate 
automated evaluation of LV function from echocardiographic views 
commonly used in the POC setting. This approach will enable more POC 
personnel to accurately assess LV function.

Deep Learning–Based Automated 
Echocardiographic Quantification of Left 
Ventricular Ejection Fraction
A Point-of-Care Solution

ORIGINAL ARTICLE
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Although the limitations of left ventricular (LV) 
ejection fraction (EF) are well known, it remains 
the principal clinical echocardiographic mea-

sure of LV function. Current echocardiography guide-
lines1 emphasize the importance of accurate quantifi-
cation of LV EF, as multiple indications for therapeutic 
interventions rely on accurate values of this parameter. 
Quantitative evaluation of LV EF typically requires mea-
surement of end-systolic and end-diastolic volumes in 
2 orthogonal apical views, using traced endocardial 
boundaries at these 2 phases of the cardiac cycle, fol-
lowed by model-based calculations (biplane method of 
disks summation). However, boundary identification is 
prone to errors due to suboptimal image quality, arti-
facts, and unusual LV shape in different pathologies, 
all resulting in considerable interobserver variability.2–7 
To circumvent this problem, we recently tested a newly 
developed, fully automated machine-learning (ML) al-
gorithm that estimates LV EF without tracing the en-
docardial boundaries and measuring LV volumes.8 This 
approach is similar to a human expert reader visually 
estimating the degree of ventricular contraction in the 
apical 2- and 4-chamber (AP2, AP4) views, based on 
years of experience acquired through the interpretation 
of thousands of exams, and translating this information 
into a quantitative LV EF value.

However, in the point-of-care (POC) setting, acquisi-
tion of the AP2 view by nonechocardiographers is chal-
lenging, and as a result, most POC clinicians usually rely 
in the evaluation of LV function on visual assessment 
of easier-to-obtain views, such as parasternal long-axis 
(PLAX) and/or AP4. Accordingly, to make the new ML 
algorithm useful in the POC setting, the previously test-
ed software was modified to quantify LV EF from any 
one of the above 3 long-axis views, or any combina-
tion of these views available in an individual patient. 
The primary goal of this study was to test the accuracy 
of these fully automated measurements in unselected 

patients referred for a clinically indicated echocardio-
gram. The secondary goal was to determine whether 
this approach would provide added diagnostic accuracy 
in the POC setting.

METHODS
Data and materials used in this study will not be made pub-
licly available.

Study Design
The new ML algorithm (Caption Health, Inc, San Francisco, 
CA) was tested in 2 separate protocols. Protocol 1 was 
designed to initially test the performance of the algorithm on 
images acquired by cardiac sonographers using systems typi-
cally found in echocardiography laboratories. First, automated 
EF measurements were compared with reference values pro-
vided by expert readers using conventional methodology. 
Then, we tested the ability to categorize LV function based 
on these automated measurements using commonly clini-
cally utilized classification of LV function by discrete grades. 
Although this methodology is highly subjective, studies have 
shown that when performed by expert readers, it may be rela-
tively accurate compared with actual measurements.2–4,6,7,9,10 
To place this approach into practical perspective, we com-
pared the accuracy of the automated ML-based classification 
of LV function to that based on visual assessment by 2 groups 
of physicians, including both trained imaging cardiologists 
and POC clinicians.

Protocol 2 was designed to test the new ML algorithm 
in the POC setting. In this protocol, the input was images 
prospectively acquired by POC nurses using a portable imag-
ing system, which combines real-time ML-based guidance 
for image acquisition from anatomically correct views11 with 
automated ML-based quantification of LVEF. These images 
were automatically analyzed to obtain EF values, which were 
compared, as in Protocol 1, to reference values provided by 
expert readers using conventional methodology. Accuracy 
metrics obtained in this protocol were compared with those 
noted in Protocol 1 to assess the extent to which the use 
of POC images obtained by less skilled users without high-
end equipment would impact the performance of the ML 
algorithm.

ML Approach
Our ML algorithm was developed to estimate LV EF without 
measuring LV end-systolic and end-diastolic volumes.8 Briefly, 
this alternative approach assumes that the ventricle contracts 
throughout systole simultaneously along its long axis and in 
the radial direction, so that its corresponding dimensions L 
and R change over time according to 2 dimensionless contrac-
tion coefficients CL and CR (Figure 1). Using these coefficients, 
LV volume at end-systole can be described by:

V ES V ED C CL R( ) = ( )· ·

where V(ED) is the volume at end-diastole. By definition of LV 
EF as the difference between V(ED) and V(ES) normalized by 
the former, it can be expressed in terms of the above 2 con-
traction coefficients as follows:

EF V ED V ES V ED 1 V ES V ED 1 C CL R= ( ) − ( )  ( ) = ( ) ( ) =/ /– – ·

CLINICAL PERSPECTIVE

This study showed that the new machine learn-
ing algorithm, adapted for echocardiographic 
views commonly used in the point-of-care setting, 
allows a fully automated evaluation of left ventric-
ular ejection fraction and, specifically, detection of 
left ventricular dysfunction with accuracy similar to 
that of visual interpretation by experienced imag-
ing cardiologists. This technology is likely to enable 
more health care personnel to confidently perform 
and interpret bedside cardiac ultrasound examina-
tions, which would address the need driven by the 
growing availability of handheld ultrasound imag-
ing devices.
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Which allows the calculation of EF without measuring vol-
umes from the estimated contraction coefficients in the lon-
gitudinal and radial direction in the apical views. In the PLAX 
view, where the longitudinal contraction is difficult to esti-
mate without the apex being fully visualized, CL is estimated 
from the contraction of the basal portion of the ventricle.

Our ML algorithm was trained the computer to estimate 
the above 2 contraction coefficients, CL and CR. Briefly, we 
used a deep learning technique, which does not use any sort 
of explicit tracking methodology, but instead lets the neural 
network decide from the data itself what the best approach 
to handle the data would be. In other words, the algorithm 
was not guided by the developers as to what should be 
detected or tracked throughout the cardiac cycle. Instead, the 
algorithm was allowed to derive from thousands of images 
the features and visual patterns necessary to estimate EF in 
agreement with the reference values obtained by human 
readers using conventional methodology. The neural network 

was constrained to report the amplitude of change in ven-
tricular dimensions, roughly the equivalent of the above con-
traction coefficients. Importantly, the neural network had the 
total freedom in choosing to track relative sizes/dimensions of 
physiological features and/or speckle patterns.

The algorithm developed on the basis of the above 
described principle (Caption Health, Brisbane, CA) was imple-
mented in Python and trained using Keras (https://keras.io/) 
with a Tensorflow (https://www.tensorflow.org/) backend 
to train and deploy the Neural Networks. The training was 
performed on a database of >50 000 echocardiographic 
studies. Training included the use of multiple AP2, AP4, and 
PLAX views available as part of each individual exam and 
LV EF values measured over the years by clinicians interpret-
ing these studies using conventional methodology (biplane 
Simpson technique. Following this training, the algorithm 
was designed to provide fully automated estimates of LV EF 
on any combination of the above 3 views.

Protocol 1
In this protocol, we used echocardiographic images of 166 
patients (age, 20–90 years; 97 males, 69 females; median 
body mass index, 26.7 kg/m2, range, 16.0–48.4 kg/m2), 
including inpatients and outpatients, who underwent clini-
cally indicated echocardiographic examinations at one of the 
3 participating institutions (Duke University Medical Center, 
Northwestern Memorial Hospital, and Minneapolis Heart 
Institute). These studies were selected to equally represent a 
wide range of body mass indices and LV function, reflected 
by a wide range of LV EF. Image quality was not used to 
exclude patients. No additional criteria were used to select 
images, to test the software in a cohort reflective of the 
general population of patients referred for an echocardio-
gram. Images were acquired using a random mix of available 
equipment, including Philips, GE, and Siemens imaging sys-
tems (Philips/CX50 4 [2.4%], Acuson/SEQUOIA 27 [16.3%], 
Philips/EPIQ 7C 1 [0.6%], GE/Vivid i 22 [13.3%], GE/Vivid E9 
3 [1.8%], GE/Vivid7 9 [5.4%], Siemens/ACUSON SC2000 8 
[4.8%], Philips/iE33 92 [55.4%]). This protocol was approved 
by the Institutional Review Boards of the 3 institutions with 
a waiver of consent.

To establish a reference standard for LV EF, images of 
each patient were independently analyzed by 3 experienced 
sonographers who traced the endocardial boundaries in the 
AP4 and AP2 views and calculated LV EF using the guidelines-
recommended biplane method of disks. These measurements 
were then reviewed and, if necessary, corrected by 3 expe-
rienced, board-certified imaging cardiologists. These biplane 
measurement sets were averaged to provide a unique, single 
reference EF value for each patient.

The validation of the ML algorithm in this protocol 
included 3 parts. First, ML-generated EF measurements were 
compared against the reference EF values using intraclass 
correlation and Bland-Altman analysis of biases and limits 
of agreement. In addition, as an alternative to Bland-Altman 
bias, which can be zero in a large sample in the presence 
of wide limits of agreement, inter-technique agreement was 
also assessed by calculating mean absolute difference (MAD) 
by averaging absolute differences between the ML estimates 
and the 3 experts’ individual measurements. Furthermore, 

Figure 1. Schematic depiction of the principle of the machine-learning 
(ML) algorithm for automated quantification of ejection fraction (EF) 
without measuring left ventricular (LV) volumes.
Contraction coefficients in the longitudinal and radial directions, CL and CR, 
defined as the ratios between ventricular dimensions, L and R, at end-systole 
(ES) and end-diastole (ED) are estimated and used to calculate EF. This is 
based on the assumption that LV volume changes from ED to ES according to 
the changes in these dimensions, that is, V(ES)=V(ED)·CL·CR. For example, if 
during systole, the ventricle shortens by 14%, CL would be 0.86, and if at the 
same time its radial dimension shortens by 30%, corresponding to CR value of 
0.70, this would result in an EF of 40%: EF=1−[0.86, 0.70]=1−0.60=0.40.
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inter-technique agreement was assessed by determining the 
number of outliers, namely cases in which EF discrepancy was 
>10% and separately >15%. These comparisons against the 
above reference standard were performed separately for the 
automated single-view analyses, including AP4, AP2, and 
PLAX views, as well as for all possible combinations of 2 views 
(AP4+AP2; PLAX+AP4; PLAX+AP2) and jointly for all 3 views.

Second, both the automated and the reference EF values 
were used to classify LV function in each case as: hyperdy-
namic (EF>73%), normal (EF between 53% and 73%), mildly-
to-moderately reduced (EF from 30% to 52%), or severely 
reduced (EF<30%). The agreement between the 2 classifica-
tions was also tested for single views, as well as for all the 
aforementioned view combinations, by calculating the per-
centage of cases where the automated classification and the 
expert classification provided the same result out of the total 
number of cases.

Finally, every image sequence was reviewed by 10 physi-
cians, including 3 experienced imaging cardiologists (not the 
same ones who participated in establishing the reference val-
ues) and 7 physicians experienced in POC cardiac ultrasound 
(emergency medicine and critical care medicine). These 10 
physicians independently reviewed each image sequence, 
visually estimated EF, and graded LV function accordingly for 
each individual view, using the same 4 categories described 
above. Each of these grades was then compared with the ref-
erence grades, resulting in a total of 1660 comparisons for 
each view or combination of views, including 498 by the car-
diologists and 1162 by the POC physicians. Agreement levels 
between the physicians’ visual classifications and the refer-
ence classification were then compared with those between 
the automated ML classification and the same reference. 
This was completed by separately evaluating the findings of 
the 3 cardiologists and those of the 7 POC physicians. These 
comparisons included a detailed analysis of the numbers (and 
percentages) of comparisons in which the ML-generated clas-
sification was equally accurate, more accurate, and less accu-
rate than the physicians’ visual classifications.

Protocol 2
In this protocol, we prospectively studied 67 patients (see 
Table 1 for demographics and basic characteristics) who, in 
addition to their clinically indicated cardiac ultrasound exami-
nation, underwent imaging by one of 8 nurses. Imaging was 
performed in the echocardiography laboratory or the inpa-
tient wards. The nurses had no prior experience with ultra-
sound imaging and underwent a 1-hour didactic training 
session and 12 practice scans, during which they received 
hands-on instruction on the use of the ML software that pro-
vides real-time prescriptive guidance to optimize transducer 
position and orientation for acquisition of 3 standard echo-
cardiographic views (A4C, A2C, and PLAX), obtained using a 
portable ultrasound imaging system (Terason uSmart 3200t 
Plus).11 This system automatically captures the image, when it 
is determined to be anatomically correct. Alternatively, if the 
user cannot achieve this, he/she can prompt the software to 
use the best view 

seen throughout the scan.
All automatically saved images showing anatomically 

correct views were used for automated analysis by the new 

ML algorithm, which provided EF values for each individual 
view, as well as for the combination of all views available in 
each patient. In addition, the AP4 view and, when available, 
AP2 view were assessed using conventional methodology 
by 3 expert readers, whose EF values were averaged and 
used as a reference EF value for each patient. Agreement 
with the reference was quantified using intraclass correla-
tion and Bland-Altman analyses. This protocol was approved 
by the Institutional Review Board and each patient signed 
informed consent.

Statistical Analysis
Data were expressed as mean values±SDs or median (range), 
when appropriate. The automated EF estimates were com-
pared with the reference standard using intraclass correlation 
(ICC), Bland-Altman analyses, and MAD. Finally, we calculated 
the sensitivity, specificity, negative and positive predictive val-
ues (NPV and PPV) of the detection of reduced LV function, 
reflected by EF<53%. All analyses, including basic statistics, 
were performed using the Python Scipy.Stats package (Python 
Software Foundation, Beaverton, OR).

RESULTS
Protocol 1
Reference values of LV EF in the study group varied 
from 15% to 77% with a median value of 46%, and 
were uniformly distributed over the entire range. The 
algorithm was able to analyze at least one view in 

Table 1.  Demographics, Basic Characteristics, and Clinical Findings of 
the Patients in Protocol 2

Patient characteristics

N

  Sex (male, female) 35, 32

  Age, y 61±17

  Height, cm 169±9

  Weight, kg 80±16

  BMI, kg/m2 28±6

Race, %

  White participants 76.1

  Black participants 14.9

  Asian 1.5

  Other 7.5

Valve abnormalities, %

  Mitral 52

  Aortic 43

  Tricuspid 54

Cardiac abnormality, % 88

  LV hypertrophy, % 48

  Pericardial effusion, % 4.5

  Patent foramen ovale, % 1.5

BMI indicates body mass index; and LV, left ventricular.
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every one of the 166 patients. The time to obtain 
an automated EF value for a given view was in the 
order of magnitude of 1 to 5 seconds on a standard 
personal computer. The results of the intraclass cor-
relation and Bland-Altman analyses are shown in Fig-
ures 2 and 3, which reflect overall very good agree-
ment between the automated EF measurements and 
the reference values, with high correlations (ICC 

range, 0.86–0.95), minimal biases (<2%), and rea-
sonable limits of agreements.

Table 2 shows the calculated MAD values between 
the automated EF measurements and the correspond-
ing reference values for each view or combination of 
views (second column). Differences were larger for sin-
gle views compared with the measurements based on 
view combinations, although there was a certain level 

Figure 2. Agreement between the machine learning based automated ejection fraction (EF) measurements and reference values: intraclass correla-
tion (ICC, left) and Bland-Altman analysis (right).
Data shown for the 3 single views. PLAX indicates parasternal long-axis.
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of overlap between the CIs in some of the compari-
sons. Importantly, all MAD values were <7%, includ-
ing those based on a single PLAX view, for which the 

largest difference was noted. This was similar to MAD 
between the experts’ individual biplane measurements, 
which was 9%.

Figure 3. Agreement between the machine learning based automated ejection fraction (EF) measurements and reference values: intraclass correla-
tion (ICC, left) and Bland-Altman analysis (right).
Data shown for the 4 possible combinations of 2 and all 3 views. PLAX indicates parasternal long-axis.
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Finally, analysis of outliers showed that the percent-
age of cases in which EF error was >15% was 0 for the 
combination of all 3 views, between 1% and 2% for 
any combination of 2 views, and higher but below 8% 
for single-view estimates, with the largest noted in the 
PLAX view at 7.5% (Table 2, right column). We found 
no clinical factors to be significantly associated with less 
accurate EF estimates, which were clearly driven by sub-
optimal image quality.

Based on the reference measurements, LV function 
was classified as hyperdynamic in 5 patients, normal in 
61, mildly-to-moderately reduced in 73 and severely re-
duced in 27 patients. The overall accuracy numbers for 
the automated, ML-based classification of LV function 
versus the physicians’ classification against the same 
reference standard are shown in Table 3. Interestingly, 
cardiologists’ classification of LV function resulted in 
higher accuracy metrics than that of POC physicians 
using the apical views, while the POC physicians’ clas-
sifications suggested higher accuracy than those of the 
cardiologists’ when using the PLAX view. The automat-
ed ML classifications resulted in higher accuracy metrics 
than both groups of physicians for both apical views, 
while in the PLAX view, the accuracy of the ML clas-
sifications surpassed that of the cardiologists’ and was 
similar to that of the POC physicians.

In terms of the ability to correctly identify patients 
with reduced LV function (EF<53%) from single views, 
the detailed comparison of performance metrics 
showed that the automated analysis of single views 
resulted in high sensitivity, specificity, NPV, and PPV, 
reflecting a comparable to or better diagnostic perfor-
mance than that of the 2 groups of physicians for most 
metrics (Table 4).

Table 5 shows a summary of the comparisons be-
tween the accuracy of the automated classification 
versus the physicians’ classification of LV function 
against the same reference standard by numbers (and 
percentages) of cases, in which the ML-generated clas-
sification was more accurate, equally accurate, and less 
accurate than the physicians’ visual classifications. Im-
portantly, for all 3 views, the percentages of ML clas-
sification less accurate than those by either group of 
physicians was consistently in the low teens (>10% 
but <15%), while ML classification was more accurate 
than the physicians’ classification in ≈20% of the cas-
es, indicating overall not only very good, but, in fact, 
better performance.

Protocol 2
The nurses were able to acquire at least 1 view suitable 
for analysis, resulting in an automated EF value in every 
one of the 67 patients. Of these patients, AP4 views 
of sufficient image quality to produce an automated 
EF estimate were available in 59, AP2 views in 38, and 

PLAX views in 37 patients. Overall, the agreement be-
tween the automated EF measurements and the refer-
ence values was excellent, as reflected by an ICC-value 
of 0.84 (CI, 0.75–0.90), a minimal bias of 2.5±6.4% 
(limits of agreement: −10.4% to 15.3%), and MAD of 
5.4% (Figure  4). Single-view analysis showed that EF 
values derived from the PLAX view were slightly less 
accurate than those obtained from the 2 apical views 
with the lowest correlation and largest bias noted in 
the PLAX view (Table 6). When compared with the ac-
curacy of the ML algorithm with images acquired by 
cardiac sonographers using high-end equipment in Pro-
tocol 1, the agreement with the reference was lower, as 
shown by the nonoverlapping CIs: ICC=0.84 [95% CI, 
0.75–0.90] versus ICC=0.94 [95% CI, 0.92–0.96] and 
the bias larger (2.5% versus 0.3%) with slightly wider 
limits of agreement.

DISCUSSION
In this study, we tested the accuracy of a novel fully 
automated ML algorithm for the quantification of LV EF 
from long-axis views, including the PLAX view, which 
is commonly used in the POC setting. The testing in-
cluded single views analyzed individually and using all 
possible combinations, to reflect different scenarios en-
countered in daily clinical practice including POC ultra-
sound imaging. These automated measurements were 
compared with reference values obtained by conven-
tional biplane measurements performed and verified by 
expert echocardiographers. Our key findings in Protocol 
1 were (1) the automated ML-based measurements are 
reasonably accurate, including the PLAX view, in which 
the entire LV apex is frequently not visualized, (2) these 
automated measurements allowed accurate classifica-
tion of LV systolic function into one of 4 categories, 
as well as detection of LV dysfunction with accuracy 
similar to or even better than that of experienced physi-
cians, including both cardiologists and POC ultrasound 
users. Protocol 2 showed that automated ML-based EF 
measurements are almost as accurate, when using im-
ages acquired by less skilled POC users, such as nurses, 
using a typical portable imaging system with the built-
in real-time prescriptive guidance software.

The use of echocardiographic imaging for quick bed-
side assessment of LV function in the POC setting has 
been steadily increasing over the past decade with the 
widespread availability of affordable and user-friendly 
handheld ultrasound imaging devices, which lend 
themselves to a quick bedside assessment of LV func-
tion.12 However, training of POC personnel in both im-
age acquisition and interpretation of fundamental com-
ponents such as LV function varies widely. In addition, 
environmental challenges and patient factors prevalent 
in noncardiologist clinical areas result in limited image 
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quality with potentially subsequent erroneous assess-
ments. Accordingly, computer-assisted solutions de-
signed to guide nonechocardiographers in these tasks 
have been increasingly sought after. One such potential 
solution is the deep learning algorithm recently vali-
dated by our group.8 In the current study, we tested an 
advanced version of this algorithm that was specifically 
adapted to expand its utility to the POC environment.

As the number of POC clinicians performing bedside 
ultrasound for cardiac function in the hospital-wide prac-
tice (including emergency department, intensive care 
units, postanesthesia care units, step-down units, out-
patient clinics) grows, the need for more accurate deter-
mination of LVEF increases in parallel. The ML software 
used in this study was designed to address this need. 
ML technology has been rapidly proving its usefulness 
in cardiac imaging, where it lends itself to an increas-
ing variety of automated measurements that traditionally 
relied on extensive user input.13,14 It is conceivable that 
ML tools such as the one validated in this study will be-
come widely used in the POC setting and allow accurate 
echocardiographic evaluation of LV function by increas-
ing numbers of health care providers, particularly when 
combined with evolving technologies aimed to assist in 

image acquisition. These tools are especially important 
in the current era of the rampant COVID-19 pandemic, 
when bedside assessment is an urgent clinical issue com-
plicated by the need for strict infection control.

In this setting, a key issue addressed in our study was 
the ability of a new ML algorithm to estimate LV EF from 
the PLAX view, which is often easier to obtain, routinely 
used in the POC setting but is not recommended by the 
guidelines for the assessment of LV function because 
of the incomplete visualization of the LV apex. Inter-
estingly, we found that POC physicians’ classification 
of LV function from this view alone was only slightly 
less accurate than the visual assessment from the usual 
apical views performed by expert imaging cardiologists 
(Table 2). Importantly, in the context of this study, in all 
3 views, the automated classification by the ML algo-
rithm was as accurate if not better than that obtained 
by both groups of physicians. These findings encour-
age additional optimization of POC echocardiographic 
training to assess LV EF from both the PLAX and apical 
views to optimize clinical care and underscore the ef-
fectiveness of the ML algorithm.

Furthermore, we found that the combined assess-
ment of LV function from > 1 view further improved 
the accuracy of the automated measurements. When 
combined with the deterministic nature of the fully au-
tomated process, these are considerable strengths of 
the ML approach. This approach is feasible in the ma-
jority of patients and provides additional strength to the 
novel algorithm compared with visual interpretation, 
which is frequently difficult for inexperienced readers 
and even for expert cardiologists.

The main limitation of Protocol 1 was that testing was 
performed on images obtained by experienced cardiac 

Table 2.  Agreement Between the Automated EF Measurements and 
the Reference Values for Each View or Combination of Views: (MAD, 
Second Column; Values Are Median With the Corresponding Ranges in 
Brackets); Analysis of Outliers Showing Percentages of Cases in Which 
EF Error Was >10% (Third column) and >15% (Right Column)

Views
EF MAD (%) 
(95% CI)

Cases with  
error >10%  
(95% CI)

Cases with 
error >15% 
(95% CI)

PLAX, AP4, 
and AP2

4.46 (3.91–5.02) 6.7 (3.0–11.1) 0.0 (0.0–0.0)

AP4 and AP2 4.89 (4.34–5.45) 12.5 (7.2–17.8) 1.3 (0.0–3.3)

AP4 and PLAX 5.10 (4.48–5.71) 12.5 (7.6–18.1) 1.4 (0.0–3.5)

AP2 and PLAX 5.05 (4.40–5.70) 10.9 (5.8–16.1) 1.5 (0.0–3.6)

AP4 5.64 (4.92–6.35) 16.7 (11.1–22.8) 4.9 (1.9–8.6)

AP2 5.89 (5.15–6.63) 14.8 (9.7–20.6) 5.8 (2.6–9.7)

PLAX 6.76 (5.87–7.66) 19.7 (13.6–26.5) 7.5 (3.4–12.2)

See text for details. EF indicates ejection fraction; MAD, mean absolute dif-
ference; and PLAX, parasternal long-axis.

Table 3.  Overall Accuracy of the Automated, Single-View ML-Based 
Classification of LV Function vs the Physicians’ Classification Against 
the Same Reference Standard

View

Accuracy of  
automated  
classification

Accuracy of  
cardiologists’  
classification

Accuracy of POC 
physicians’  
classification

AP4 75.3% 72.4% 63.9%

AP2 71.6% 68.9% 62.4%

PLAX 66.7% 61.7% 67.7%

Physicians’ data shown by specialty: 3 cardiologists and separately 7 POC 
physicians. Numbers represent percentages of comparisons resulting in identical 
classifications as the reference classification. LV indicates left ventricular; ML, 
machine-learning; PLAX, parasternal long-axis; and POC, point-of-care.

Table 4.  Sensitivity, Specificity, NPV, and PPV of the Single-View De-
tection of Reduced LV Function, Reflected by EF<53%

View  
Automated 
classification

Cardiologists’ 
classification

POC physicians’ 
classification

AP4 Sensitivity, % 91.0 84.7 72.4

 Specificity, % 83.3 88.4 87.3

 PPV, % 92.9 94.4 94.8

 NPV, % 85.9 79.9 70.1

AP2 Sensitivity, % 89.0 80.3 68.3

 Specificity, % 75.8 89.1 91.5

 PPV, % 90.8 95.3 96.2

 NPV, % 87.7 80.3 67.8

PLAX Sensitivity, % 77.0 79.6 78.6

 Specificity, % 78.8 85.1 86.4

 PPV, % 91.7 89.7 94.6

 NPV, % 82.5 82.6 79.9

Values for the automated ML detection, as well as for the 2 groups of physi-
cians, are shown separately for each view. See text for details. EF indicates 
ejection fraction; LV, left ventricular; NPV, negative predictive value; PLAX, para-
sternal long-axis; POC, point-of-care; and PPV, positive predictive value.
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sonographers, which are likely to be of higher quality 
than those obtained by less skilled imagers. Also, in Pro-
tocol 1, all images were acquired on standard commercial 
ultrasound imaging systems, which provide better quality 
images than devices commonly used in the POC setting. 
Accordingly, Protocol 2 was designed to determine the 
feasibility rates and accuracy metrics when testing the ML 
algorithm on images obtained in an actual POC setting 

using a portable imaging device. It is not surprising that 
when anatomically correct images acquired by any user 
irrespective of skill level with the aid of the real-time 
prescriptive guidance system, the automated analysis 
provides accurate EF values. These 2 protocols together 
represent an important first step of validation of this po-
tentially clinically useful technology that incorporates the 
PLAX view in the automated analysis of LV EF.

Limitations
One limitation of the software tested in this study is 
that it does not assess other parameters of LV func-
tion, beyond EF, and therefore this study cannot answer 
the question whether automated measurement of ad-
ditional functional parameters would further improve 
the evaluation of patients undergoing POC ultrasound.

One might see as a limitation the fact that cardiac 
magnetic resonance, which is frequently referred to as 
the gold standard for cardiac chamber quantification,15 
was not used as a reference for comparisons in our study. 
However, this choice was made consciously during the 
design of the study, and was directly related to our aim of 
testing the novel ML algorithm as a potential substitute 
for the prevailing methodology currently used in the POC 
setting. We felt that the best way to achieve this goal was 
to compare both techniques side-by-side against a strong 
echocardiography-based reference, created by averag-
ing EF measurements obtained by 3 sonographers us-
ing the gold-standard biplane method of disks and then 
verified by expert cardiologists. Comparisons against this 

Table 5.  Numbers (and Percentages) of the 1660 Comparisons Made on 166 Sets of Images by 3 Cardiologists and 7 POC Physicians, in Which the 
ML-Generated Classification Was More Accurate, Equally Accurate, and Less Accurate Than the Physicians’ Visual Classifications

Cardiologists’ classification POC physicians’ classification

AP4, n (%) AP2, n (%) PLAX, n (%) AP4, n (%) AP2, n (%) PLAX, n (%)

ML better 82 (16.5%) 71 (14.3%) 88 (17.7%) 258 (22.2%) 252 (21.7%) 154 (13.3%)

ML equal 327 (65.7%) 311 (62.4%) 275 (55.2%) 692 (59.6%) 650 (55.9%) 658 (56.6%)

ML worse 69 (13.9%) 60 (12.0%) 65 (13.1%) 133 (11.4%) 142 (12.2%) 164 (14.1%)

No assessment 20 (4.0%) 56 (11.2%) 70 (14.1%) 79 (6.8%) 118 (10.2%) 186 (16.0%)

Total 498 (100%) 1162 (100%)

The No assessment line represents the cases in which physicians were unable to classify LV function due to suboptimal image quality. ML indicates machine-
learning; PLAX, parasternal long-axis; and POC, point-of-care.

Figure 4. Agreement between the machine learning based automated 
ejection fraction (EF) measurements and reference values obtained by 
point-of-care clinicians using a portable imaging system: intraclass cor-
relation (ICC, top) and Bland-Altman analysis (bottom).
Data shown for the combination of all available views in each patient. 

Table 6.  Results of ICC and Bland-Altman Analyses of Agreement 
Between Automated EF Measurements by Nurses and the Reference EF 
Values for Each View or Combination of All Available Views

 
All available 
views AP4 AP2 PLAX

ICC 0.84 0.83 0.84 0.74

95% CI 0.75 to 0.90 0.73 to 0.90 0.71 to 0.91 0.55 to 0.86

Bias, % 2.5 1.0 2.9 4.2

LOA, % −10.4 to 15.3 −14.7 to 16.7 −12.2 to 17.9 −9.4 to 17.7

EF indicates ejection fraction; ICC, intraclass correlation; LOA, level of agree-
ment; and PLAX, parasternal long-axis
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reference showed very good agreement, indicating that 
the automated approach is at least as good as human 
readers, with the advantages of high feasibility and fully 
automated nature resulting in perfect reproducibility.

CONCLUSIONS
In summary, this study showed that the new ML algo-
rithm, adapted for echocardiographic views commonly 
used in the POC setting, allows automated evaluation 
of LV EF and, specifically, detection of LV dysfunction 
with accuracy similar to that of visual interpretation 
by experienced imaging cardiologists. This technology 
is likely to enable more health care personnel who are 
developing their competence in POC to confidently per-
form and interpret bedside cardiac ultrasound exami-
nations, which would address the need driven by the 
growing availability of handheld imaging devices.
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